Monte Carlo Results for Projected Self-Avoiding Polygons: A Two-dimensional Model for Knotted Polymers

نویسنده

  • E. Guitter
چکیده

We introduce a two-dimensional lattice model for the description of knotted polymer rings. A polymer configuration is modeled by a closed polygon drawn on the square diagonal lattice, with possible crossings describing pairs of strands of polymer passing on top of each other. Each polygon configuration can be viewed as the two-dimensional projection of a particular knot. We study numerically the statistics of large polygons with a fixed knot type, using a generalization of the BFACF algorithm for self-avoiding walks. This new algorithm incorporates both the displacement of crossings and the three types of Reidemeister transformations preserving the knot topology. Its ergodicity within a fixed knot type is not proven here rigorously but strong arguments in favor of this ergodicity are given together with a tentative sketch of proof. Assuming this ergodicity, we obtain numerically the following results for the statistics of knotted polygons: In the limit of a low crossing fugacity, we find a localization along the polygon of all the primary factors forming the knot. Increasing the crossing fugacity gives rise to a transition from a self-avoiding walk to a branched polymer behavior.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pivot-coupled grand canonical Monte Carlo method for ring simulations

A new method is presented for the simulation of an ensemble of polymer rings of variable size at fixed monomer chemical potential. Called pivot-coupled grand canonical Monte Carlo ~PC-GCMC!, it is based on the directed addition or removal of a monomer to or from a ring, coupled to the pivot of a section of the ring to maintain the ring’s continuity. Application of PC-GCMC to single, isolated ri...

متن کامل

Asymptotic Behavior of Inflated Lattice Polygons

We study the inflated phase of two dimensional lattice polygons with fixed perimeter N and variable area, associating a weight exp[pA− Jb] to a polygon with area A and b bends. For convex and column-convex polygons, we show that 〈A〉/Amax = 1−K(J)/p̃ 2 + O(ρ), where p̃ = pN ≫ 1, and ρ < 1. The constant K(J) is found to be the same for both types of polygons. We argue that self-avoiding polygons sh...

متن کامل

Effect of confinement: polygons in strips, slabs and rectangles

In this chapter we will be considering the effect of confining polygons to lie in a bounded geometry. This has already been briefly discussed in Chapters 2 and 3, but here we give many more results. The simplest, non-trivial case is that of SAP on the two-dimensional square lattice Z2, confined between two parallel lines, say x = 0 and x = w. This problem is essentially 1-dimensional, and as su...

متن کامل

Scaling function for self-avoiding polygons

Exactly solvable models of planar polygons, weighted by perimeter and area, have deepened our understanding of the critical behaviour of polygon models in recent years. Based on these results, we derive a conjecture for the exact form of the critical scaling function for planar self-avoiding polygons. The validity of this conjecture was recently tested numerically using exact enumeration data f...

متن کامل

Canonical Monte Carlo determination of the connective constant of self-avoiding walks

We define a statistic an(w), the size of the atmosphere of a self-avoiding walk, w, of length n, with the property that 〈an(w)〉 → μ as n → ∞, where μ is the growth constant of lattice self-avoiding walks. Both μ and the entropic exponent γ may be estimated to high precision from 〈a(w)〉 using canonical Monte Carlo simulations of self-avoiding walks. Previous Monte Carlo measurements of μ and γ h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008